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ABSTRACT: The objective is estimated the concentration of air pollution, by solving the atmospheric 
diffusion equation (ADE) using Adomain decomposition method. The solution depends on eddy 
diffusivity profile (K) and wind speed at the released point (u). We solve the ADE numerically in two 
dimensions using Adomain decomposition method, then, compared our results with observed data.  
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INTRODUCTION 
 
 The Adomian decomposition method (ADM) has been applied in wide class of stochastic and deterministic 
problems in many interesting mathematics and physics areas (Adomain ,1994).  Adomain gave a review of the 
decomposition method in (Adomain, 1988). Bellomo and Monaco(1985)  have used ADM in solving random 
nonlinear differential equations, Wazwaz (2001) found the numerical solution of sixth order boundary value problem 
by ADM, El-Sayed and Abdel – Aziz (2003) compared between Adomians decomposition method and wavelet – 
Galerkin  method for solving integro- differential equations. El-gamel (2007) compared between the Sine –Galerkin 
and the modified decomposition methods for two – point boundary –value problems. 
 In this paper, advection diffusion equation was solved in two dimensional space (x,z) using Adomian 
decomposition method to obtain the normalized crosswind integrated concentration employing numerical form. Two 
forms models of the eddy diffusivities as well as the wind speed at the released point were used in the solution. 
Two calculated models were compared with observed data measured at Copenhagen in Denmark my using 
statistical technique.  
 
Numerical Method 
Time dependent advection – diffusion equation is written as (Arya, 1995) 

 
where: 
c is the average concentration of air pollution (μg/m3). 
u is the wind speed (m/s). 
Kx, ky and kz are the eddy diffusivities coefficients along x, y and z axes respectively (m2/s). 
For steady state, taking dc /dt=0 and the diffusion in the x-axis direction is assumed to be zero compared with the 
advective in the same directions, hence: 
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Assuming that ky =kz =k(x), integrating the equation (2) with respect to y, we obtain the normalized crosswind 
integrated concentration cy (x, z) of contaminant at a point (x, z) of the atmospheric advection–diffusion equation is 
written in the form (Essa et al. 2006): 
    (   )
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                                                                                             (3)                                                                                                   

Equation (3) is subjected to the following boundary condition 
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1-It is assumed that the pollutants are absorbed at the ground surface i.e. where vg is the deposition velocity (m/s). 

 
(i) 

 
2-The flux at the top of the mixing layer can be given by 
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 (ii) 
3-The mass continuity is written in the form:-   
u cy (x,z) =Q δ(z-h)                                                at x=0                       (iii)  
where δ is Dirac delta function, Q is the source strength and h is mixing height. 

 
4-The concentration of the pollutant tends to zero at large distance of the source, i.e.  
cy(x,z) =0                   at  z=∞                                                                 (iv) 
In equation (3), we take A=u/K and Equation (3) can be solved using Adomain decompositions method as follows: 
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Multiplying both sides of the above equation by L
-1

 zz (inverse), one gets:              
   (   )           

          (   ) 

    
   ∫  ∫ (         

          (   ))     
 

 

 

 
                                                                (4) 

Assuming that:- 
                                                 Co=M(x)+ z N(x)                                   (4a)                          
where M and N are unknown functions which will be determined from boundary conditions, using equation (4) to 
get the general solution in the from:- 
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Assuming the solution has the form:- 
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                                               (7) 
By differentiating the equation (7) with respect to z and multiplying by kz , we obtain that: 
 

                                                                        (8)  
Using the boundary condition (i) at z=0, we obtain that: -                                                                                                                                     

                                                        (9) 
Using the boundary condition (ii) at z=h, we obtain that: - 
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Integrating the equation (9a) from 0 to x, we obtain that:- 
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Using the boundary condition (iii), we get that:- 

 
Substituting from N0(x) in equation (10), we get that:-  
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Substituting from two equations (9) and (11) in equation (4a), we obtain that:- 
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Where B=k/vg                                                                                                                                               
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Substituting equations (9a) and (14) in equation (6), we obtain that :-  

                                                                                (15) 
 
Where Similar, we get     
     
 
 
                                                                                                       (16) 
The general solution: 
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RESULTS AND DISCUSSION 
 
We can obtain the wind speed at source height 115m as follows: 

           (
 

  
)
 

                                                                                                   (27)              Where:- 

U115 is the wind speed at 115m. 
U10 is the wind speed at 10m height. 
z is the physical height. 
 p is a parameter estimated by Irwin (1979), which is related to stability classes, is given in Table (1). 
 

Table 1. Estimates of the power (p) in urban areas for six Stability Classes based on information by Irwin (1979b) 

Stability 
Classes 

Very Unstable (A) Moderately 
Unstable (B) 

Slightly unstable (C) Neutral (D) Slightly stable (E) Moderately Stable (F) 

Urban p 0.19 0.21 0.32 0.30 0.36 0.46 

         
       In the present model, we used two methods for the calculation of the eddy diffusivity depends on the downwind 
distance (x). The first method taking k in the from k1(x) =0.04ux  and the second method are referenced to (Arya, 
1995) where k takes in the form:- 

 
Where  σw   is the standard deviation of the vertical velocity.   
   Table 2. Values of wind speed at 10 m and 115 m and downwind distance through unstable and neutral stabilities in northern part of 

Copenhagen 

Run no. Stability u 10 (m/s) U115 (m/s) Distance (x) (m) 

1 Very unstable (A) 2.1 3.34 1900 

1 Very unstable (A) 2.1 3.34 3700 

2 Slightly unstable (C) 4.9 10.71 2100 

2 Slightly unstable (C) 4.9 10.71 4200 

3 Moderately unstable (B) 2.4 4.01 1900 

3 Moderately unstable (B) 2.4 4.01 3700 

3 Moderately unstable (B) 2.4 4.01 5400 

5 Slightly unstable (C) 3.1 4.93 2100 

5 Slightly unstable (C) 3.1 4.93 4200 

5 Slightly unstable (C) 3.1 4.93 6100 

6 Slightly unstable (C) 7.2 11.45 2000 

6 Slightly unstable (C) 7.2 11.45 4200 

6 Slightly unstable (C) 7.2 11.45 5900 

7 Moderately unstable (B) 4.1 6.85 2000 

7 Moderately unstable (B) 4.1 6.85 4100 

7 Moderately unstable (B) 4.1 6.85 5300 

8 Neutral (D) 4.2 8.74 1900 

8 Neutral (D) 4.2 8.74 3600 

8 Neutral (D) 4.2 8.74 5300 

9 Slightly unstable (C) 5.1 11.14 2100 

9 Slightly unstable (C) 5.1 11.14 4200 

9 Slightly unstable (C) 5.1 11.14 6000 
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      The used data set was observed from the atmospheric diffusion experiments conducted at the northern part of 
Copenhagen, Denmark, under unstable conditions (Gryning and Lyck, 1984; Gryning et al., 1987). The tracer sulfur 
hexafluoride (SF6)  
 
Table 3. Comparison between Observed, two numerical models normalized crosswind-integrated concentrations Cy/Q and downwind distance 

un no. Stability Down distance (m) 
Cy/Q *10-4 (s/m2) 

Numerical model 1 Numerical model 2 Observed 

1 Very unstable (A) 1900 3.59 2.08 6.48 
1 Very unstable (A) 3700 4.93 3.79 2.31 
2 Slightly unstable (C) 2100 7.36 4.03 5.38 

2 Slightly unstable (C) 4200 2.04 1.27 2.95 

3 Moderately unstable (B) 1900 1.05 1.32 8.2 

3 Moderately unstable (B) 3700 8.94 3.40 6.22 
3 Moderately unstable (B) 5400 1.20 6.25 4.3 

5 Slightly unstable (C) 2100 1.18 3.55 6.72 
5 Slightly unstable (C) 4200 1.69 8.75 5.84 
5 Slightly unstable (C) 6100 3.76 1.53 4.97 

6 Slightly unstable (C) 2000 2.02 2.83 3.96 
6 Slightly unstable (C) 4200 1.44 7.24 2.22 
6 Slightly unstable (C) 5900 5.31 1.18 1.83 

7 Moderately unstable (B) 2000 1.81 2.63 6.7 
7 Moderately unstable (B) 4100 1.46 6.09 3.25 
7 Moderately unstable (B) 5300 1.01 8.62 2.23 

8 Neutral (D) 1900 5.14 7.11 4.16 
8 Neutral (D) 3600 9.14 1.50 2.02 
8 Neutral (D) 5300 4.32 2.42 1.52 

9 Slightly unstable (C) 2100 5.97 3.50 4.58 
9 Slightly unstable (C) 4200 1.05 7.70 3.11 
9 Slightly unstable (C) 6000 1.60 1.18 2.59 

 
 Was released from a tower at a height of 115m without buoyancy. The values of different parameters such as 
stability, wind speed at 10m (U10), wind speed at 115m (U115), and downwind distance during the experiment are 
represented in (Table 2). 
 Table (3); shows the observed, two analytical models, and two numerical normalized crosswind-integrated 
concentrations Cy/Q and downwind distance. 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1. Comparison between numerical cross observed normalized crosswind integrated concentration and downwind distance 

 

     
 
 
 
 
 
 
 
 
 
 

Figure 2. The variation of the numerical predicted normalized crosswind concentrations via observed normalized crosswind concentrations 
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 Fig. (1), shows that the variation of numerical and observed normalized crosswind concentrations data 
downwind distances. We find that numerical model 1 have points agree with the observed data, while the others 
points are over predicated. 
 
 Fig. (2) Show comparison between numerical model 1, 2 and observed normalized crosswind integrated 
concentrations. We find that numerical model 1 agree with observed data than numerical model 2, while numerical 
model 2 has most points are over predicted with the observed data. 
 
Statistical method 
 Now, the statistical method is presented and comparison among analytical, statically and observed results will 
be offered (Hanna 1989). The following standard statistical performance measures that characterize the agreement 
between model prediction (Cp=Cpred/Q) and observation (Co=Cobs/Q): 
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 Where σp and σo are the standard deviations of Cp and Co respectively. Here the over bars indicate the 
average over all measurements (Nm). A perfect model would have the following idealized performance: 
NMSE = FB = 0 and COR = FAC2 = 1.0 
 

Table 4. Comparison between our different models according to standard statistical performance measure 

Models NMSE FB COR FAC2 

Numerical model 1 0.66 0.04 - 0.11 1.19 
Numerical model 2 0.79 0.19 - 0.08 1.09 

     
 From the statistical method, we find that the two models are factors of 2 with observed data. Regarding to 
NMSE, numerical model 1 is better than numerical model 2. The numerical model 1 is also the best regarding to 
FB. The correlations of numerical model 1 and model 2 are equal -0.11 and -0.08 respectively.  
 

CONCULSION 
 

 We have used numerical solution of two- dimensional atmospheric diffusion equation by Adomain 
decomposition method to calculate normalized crosswind concentrations for continuous emits sulfur hexafluoride 
(SF6). In this model the vertical eddy diffusivity depends on the downwind distance and it is calculated using two 
methods k1(x) =0.04 u x and k2 (x) =0.16 (σw/u) x.           
 Graphically, we can observe that numerical models 1 and two have most points inside a factor of two with the 
observed data. 
 From the statistical method, we find that the two models are factors of 2 (FAC2) 
Regarding to NMSE, numerical models 1 and two are better with observed data. Also the numerical models 1 and 
2 are the best regarding to FB. The correlations of numerical model 1 and model 2 are equal -0.11 and -0.08 
respectively.  
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